相关推荐
-
钢琴即兴伴奏教程 [VIDEO CD]/刘聪主讲
浏览量11137
-
国乐四宝精萃 [声盘]·笛子
浏览量11959
-
国乐四宝精萃 [声盘]·二胡
浏览量11340
-
国乐四宝精萃 [声盘]·琵琶
浏览量11650
-
国乐四宝精萃 [声盘]·古琴
浏览量11938
-
红旗颂 /吕其明等曲
浏览量12356
分级列表和介绍
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
- 18
- 19
- 20
- 21
- 22
- 23
- 24
- 25
- 26
- 27
- 28
- 29
- 30
- 31
- 32
- 33
- 34
- 35
- 36
- 37
- 38
- 39
- 40
- 41
- 42
- 43
- 44
- 45
- 46
- 47
- 48
- 49
- 50
- 51
- 52
- 53
- 54
- 55
- 56
- 57
- 58
- 59
- 60
- 61
- 62
- 63
- 64
- 65
- 66
- 67
- 68
- 69
- 70
- 71
- 72
- 73
- 74
- 75
- 76
- 77
- 78
- 79
- 80
- 81
- 82
- 83
- 84
- 85
- 86
- 87
- 88
- 89
- 90
- 91
- 92
- 93
- 94
- 95
- 96
- 97
- 98
- 99
- 100
- 101
- 102
- 103
- 104
- 105
- 106
- 107
- 108
- 109
- 110
- 111
- 112
- 113
- 114
- 115
- 116
- 117
- 118
- 119
- 120
- 121
- 122
- 123
- 124
- 125
- 126
- 127
- 128
- 129
- 130
- 131
- 132
- 133
- 134
- 135
- 136
- 137
- 138
- 139
- 140
- 141
- 142
- 143
-
第1集:矩阵简介
矩阵简介
-
第2集:矩阵乘法(一)
矩阵乘法(一)
-
第3集:矩阵乘法(二)
矩阵乘法(二)
-
第4集:矩阵的逆(一)
矩阵的逆(一)
-
第5集:矩阵的逆(二)
矩阵的逆(二)
-
第6集:矩阵的逆(三)
矩阵的逆(三)
-
第7集:矩阵法求解方程组
矩阵法求解方程组
-
第8集:矩阵法求向量组合
矩阵法求向量组合
-
第9集:奇异矩阵
奇异矩阵
-
第10集:三元线性方程
三元线性方程
-
第11集:求解三元方程组
求解三元方程组
-
第12集:向量简介
向量简介
-
第13集:向量范例
向量范例
-
第14集:直线的参数表示
直线的参数表示
-
第15集:线性组合和向量张成的空间
线性组合和向量张成的空间
-
第16集:关于线性无关
关于线性无关
-
第17集:线性无关的进一步介绍
线性无关的进一步介绍
-
第18集:线性无关的相关例题
线性无关的相关例题
-
第19集:线性子空间
线性子空间
-
第20集:线性代数——子空间的基
线性代数——子空间的基
-
第21集:向量的点积和模长
向量的点积和模长
-
第22集:向量点积的性质及证明
向量点积的性质及证明
-
第23集:不等式的证明
不等式的证明
-
第24集:三角不等式
三角不等式
-
第25集:向量夹角的定义
向量夹角的定义
-
第26集:R3中由点与法向量定义的平面
R3中由点与法向量定义的平面
-
第27集:外积
外积
-
第28集:外积与夹角正弦值的关系
外积与夹角正弦值的关系
-
第29集:点积与外积的比较
点积与外积的比较
-
第30集:矩阵行简化阶梯型1
矩阵行简化阶梯型1
-
第31集:矩阵行简化阶梯型2
矩阵行简化阶梯型2
-
第32集:矩阵行简化阶梯型3
矩阵行简化阶梯型3
-
第33集:矩阵向量积
讲解矩阵与向量的乘法定义
-
第34集:零空间1-矩阵零空间介绍
矩阵的零空间的定义与性质
-
第35集:零空间2-矩阵零空间计算
矩阵的零空间的计算
-
第36集:零空间3-零空间与线性无关的关系
零空间与线性无关间的关系
-
第37集:矩阵的列空间
讲解矩阵的零空间的定义与性质
-
第38集:零空间与列空间
零空间与列空间
-
第39集:把列空间想象成三维空间上的平面
通过求出两个列向量的叉乘积求出平面的方程
-
第40集:证明任意子空间基底数目相同
通过反证法替换基底向量中的元素来推导出矛盾,得出所有子空间基底必相等。
-
第41集:零空间的维数或零度
求一个矩阵的零度的方法是将该矩阵化成阶梯型A,求Ax=0自由变量的个数即是零度。
-
第42集:列空间的维数或秩
通过把一个矩阵化成阶梯型,进而求出不相关主列的个数即秩
-
第43集:基底列和主列的关系
通过证明Rx=0和Ax=0中零空间的一致性,推出基底列和主列的关系。
-
第44集:证明候选基底确实张成C(A)空间
从五个向量中选取了三个向量,证明了其符合张成C(A)空间的两个条件。
-
第45集:函数的深入理解
更加深入地探讨函数概念。
-
第46集:向量变换
将函数的定义域范围从数字推广到了向量,用T代替f,、。
-
第47集:线性变换
介绍了变换中一类特殊的变换----线性变换满足的两个条件。
-
第48集:矩阵向量乘法与线性变换
本节讲述矩阵向量乘法和线性变换之间的关系。
-
第49集:线性变换的矩阵向量乘积表示
介绍如何将一个线性变换表示成向量与矩阵乘积的形式。
-
第50集:子集在线性变换下的像
通过线性变换将R2中的三角形映到R2中的另一个三角形
-
第51集:变换的像空间im(T)
本节视频讲述子空间的变换 以及变换的像空间的概念。
-
第52集:集合的原像
介绍值域的子集合关于某个变换的原像的概念
-
第53集:原像和核的相关例子
线性变换中关于原像和核的定义及相关例题
-
第54集:线性变换的加法运算和数乘运算
介绍线性变换的加法运算规则和数乘运算规则。
-
第55集:矩阵加法和标量乘法详细论述
详细介绍矩阵加法和标量乘法。
-
第56集:线性变换的例子——放缩和映射
构造一种变换使得一个三角形翻转并在y方向上伸长。
-
第57集:在R2空间下利用2阶矩阵表示旋转变换
线性变换的实例。
-
第58集:在R3空间内做旋转
对R2中做旋转变换的扩展
-
第59集:单位向量
介绍了单位向量的概念,以及构造与给定向量同向的单位向量的方法。
-
第60集:投影介绍
本集介绍了向量到直线投影的定义、几何含义及求法。
-
第61集:投影到直线的矩阵向量积表示
详细计算了投影到直线的情况。
-
第62集:线性变换的复合1
介绍了两种线性变换及其复合变换。
-
第63集:线性变换的复合2
验证复合变换的变换矩阵等于两个线性变换对应的变换矩阵的乘积。
-
第64集:矩阵乘积范例
举例来说明矩阵乘积问题,并从变换角度来看矩阵乘积问题。
-
第65集:矩阵乘法结合律
利用线性变换证明两个或两个以上矩阵乘法满足结合律。
-
第66集:矩阵乘法分配律
考察矩阵乘法的又一个性质。
-
第67集:逆函数介绍
介绍了逆函数的概念并证明了其性质。
-
第68集:可逆性和f(x)=y解唯一性等价的证明
利用函数可逆性的定义从两个方向相互证明一个函数f的可逆性和f(x)=y解的唯一性是等价的这一命题。
-
第69集:满射函数和单射函数
介绍满射函数和单射函数是如何定义的
-
第70集:映上和一对一和可逆性的联系
证明一个函数是可逆的当且仅当它是一个映上的而且是一对一的函数。
-
第71集:一个变换是映上的判别方法
通过这个变换的对应矩阵的维数可以判断变换是否是满射
-
第72集:求Ax=b的解集
通过线性变换求解Ax=b的解集。
-
第73集:矩阵进行1-1变换的条件
介绍并论证矩阵在1-1映射下进行变换的条件。
-
第74集:关于可逆性的简化条件
某变换可逆的两个满足条件,以及条件所隐含的几何意义。
-
第75集:证明逆矩阵是线性变换
利用线性变换满足的两个条件:T(a+b)=T(a)+T(b) 和 T(ca)=cT(a) (a和b都是同一集合中的向量)来证明逆矩阵是线性变换。
-
第76集:寻求逆矩阵的求得方法
根据逆矩阵本身的定义:从值域到定义域的映射,利用增广矩阵及行变换来求出一个矩阵的逆矩阵。
-
第77集:求逆矩阵举例
通过上一课得到的方法,实际运用试求逆矩阵。
-
第78集:2×2矩阵的逆矩阵一般形式
通过前两课学习的方法,用2×2矩阵的一般形式推导2×2矩阵的逆矩阵的一般形式以及2×2矩阵行列式的求法。
-
第79集:3×3矩阵的行列式
基于上一节课所学的2×2矩阵的行列式求法,寻求3×3矩阵行列式的求法。
-
第80集:n×n矩阵的行列式
本课介绍了递归的思想,通过递归定义以及前两课提及的最基本的2×2矩阵行列式的求法,推广出n×n矩阵一般形式的行列式求法。
-
第81集:沿其他行或列求矩阵行列式
上节课介绍了求矩阵行列式的基本方法,我们举的例子是沿着第一行算。这节课我们探索其它求矩阵行列式的方法,不仅仅是可以沿着第一行,而是能够任意挑选一行或一列,以达到简化运算的目的。
-
第82集:萨吕法则
利用增广矩阵简单记忆求行列式公式。
-
第83集:当矩阵一行乘以系数时的行列式运算
探寻当矩阵的其中一行乘以一个系数k时行列式与原行列式的关系:即为原行列式的k倍。
-
第84集:关于行乘系数行列式的一点修正
对于上节课标记错误的一点修正。
-
第85集:当行相加时矩阵行列式的规律
当有三个矩阵X Y Z,出了某特定第i行以外全部相等,而Z的第i行为X和Y的第i行相加得到时,三个矩阵的行列式有如下规律:det(Z)=det(X)+det(Y)86.
-
第86集:有相同行的行列式
矩阵有重复的行或列,行列式为0。
-
第87集:行变换后的行列式
进行行变换不改变矩阵的行列式。
-
第88集:上三角阵行列式
上三角矩阵行列式的求解。
-
第89集:4×4行列式的简化
一个4×4矩阵化简成上三角矩阵,并求解行列式。
-
第90集:行列式与平行四边形面积
求解由两个向量构造的平行四边形的面积。
-
第91集:行列式作为面积因子
一个区域在线性变换下映射到另一个区域,这两个区域的面积比就是变换矩阵的行列式的绝对值。
-
第92集:矩阵的转置
求解矩阵的转置矩阵。
-
第93集:转置的行列式
方阵进行转置,行列式不变。
-
第94集:矩阵乘积的转置
矩阵乘积的转置等于矩阵调换顺序之后分别做转置的乘积。
-
第95集:转置矩阵的加法与求逆运算
转置矩阵加法与求逆过程的运算一般性质。
-
第96集:求向量的转置
向量转置的基本运算及重要性质。
-
第97集:行空间和左零空间
通过例子讲解行空间与左零空间的定义。
-
第98集:左零空间和行空间的可视化
由一个在R3中的例子而直观地看出左零空间和行空间。
-
第99集:正交补
讲解一般情形下的子空间V的正交补的定义性质及计算方法。
-
第100集:矩阵A的秩等于A转置的秩
通过计算A与A的转置的的列空间的基向量的个数而证明出矩阵A的秩等于A的转置的秩。
-
第101集:dim(V)+dim(V正交补)=n
通过计算子空间V的列空间的维数和左零空间的维数而证明出V的维数与V的正交补空间的维数的和等于n
-
第102集:用子空间中的向量表示Rn中的向量
找出子空间V的列空间的一组基和V的左零空间的一组基 并证明出它们合起来就是Rn的一组基
-
第103集:正交补空间的正交补空间
研究一个子空间与其正交补空间的正交补空间的关系并证明
-
第104集:零空间的正交补
给出零空间的正交补并证明
-
第105集:方程Ax=b的行空间中的解
求方程Ax=b在行空间中的唯一解并证明其唯一性
-
第106集:方程Ax=b在行空间中的解的例子
用几何方法从图像上讨论方程Ax=b在行空间中的解
-
第107集:证明(A转置)A是可逆的
证明A'A可逆
-
第108集:子空间上的投影
介绍子空间上投影的概念并用投影的方法计算方程的解
-
第109集:平面上投影的可视化
将子空间上投影的定义应用于平面并从几何上来描述
-
第110集:子空间上的投影是线性变换
证明子空间上的投影本质上是一个线性变换
-
第111集:子空间投影矩阵的例子
R4中关于子空间投影矩阵的例子
-
第112集:关于投影的矩阵的另一个例子
求投影矩阵的一种简单方法
-
第113集:投影是子空间中距离原向量最近的向量
证明一个向量在子空间中的投影是该子空间的所有向量中距离原向量最近的向量
-
第114集:最小二乘逼近
介绍最方程Ax=b小二乘解的定义及几何意义
-
第115集:有关最小二乘的例子
利用最小二乘原理求到三条直线交点距离之和最小的点
-
第116集:另一个有关最小二乘的例子
利用最小二乘原理求过平面上四个点的直线的最佳逼近
-
第117集:向量在一组基下的坐标
定义一个向量在给定的一组基下的坐标
-
第118集:基变换的矩阵
利用基的变换矩阵求一个向量在一组基下的坐标
-
第119集:可逆基向量矩阵变换
在基向量的变换矩阵是可逆的条件下,一个向量在标准基下的坐标可以与它在其他基下的坐标相互转换
-
第120集:对应一个基底的变换矩阵
当把标准基底变成一个随意选取的基底时,线性变换矩阵也随之变换且和原来的矩阵有一定关系
-
第121集:一个替补基底变换矩阵的例子(1)
本节视频是用一个具体的例子验证上节视频结论是否成立
-
第122集:一个替补基底变换矩阵的例子(2)
本节视频是延续上一讲,用一个具体例子证明了所得结论是成立的,并且指出了选取恰当基底的重要性
-
第123集:改变坐标系有助于求出变换
本节视频从一个具体的变换(反射变换)出发,通过改变基底向量,使得求解变换矩阵A变得更简单。
-
第124集:标准正交基简介
本节引出了一类特殊的基底---标准正交基,并证明了它两个基本性质
-
第125集:标准正交基下的坐标
本节介绍了标准正交基下求解坐标方法的特殊性和简洁性,并用一个具体的例子验证了这个结论。
-
第126集:正交基下到子空间的投影
利用正交基做向量到子空间上的投影
-
第127集:计算正交基下到子空间的投影矩阵
使用正交基计算向量到子空间上的投影矩阵
-
第128集:计算镜像变换矩阵
用改变基底的方式来计算镜像变换的矩阵
-
第129集:正交矩阵的保角性和保长性
正交矩阵具有保角和保长度的性质
-
第130集:Schmidt过程
通过空间的一组非标准正交基获得一组标准正交基的常见作法
-
第131集:Gram-Schmidt过程的例子
通过一个求平面上的一组标准正交基的例子掌握Gram-Schmidt过程
-
第132集:Gram-Schmidt过程的另一个例子
再次用Gram-Schmidt过程求解一组标准正交基
-
第133集:特征向量和特征值的引入
通过几何直观引入特征值和特征向量的概念并简介它的主要用途
-
第134集:特征值公式的证明
证明求解特征值问题转化为求解行列式等于0下的λ这一等价命题
-
第135集:求解一个2×2矩阵的特征值的一个例子
求解一个2×2矩阵的特征值:通过求解2×2矩阵的特征值获得求解一般方阵的特征值的方法
-
第136集:求解特征向量和特征空间
根据特征值,特征向量,特征空间的定义计算一个矩阵的特征向量及它的特征空间
-
第137集:求解3×3矩阵的特征值
用特征多项式求解方程确定3×3矩阵的特征值
-
第138集:求解3×3矩阵的特征向量和特征空间
根据特征值,特征向量,特征空间的定义计算一个3×3矩阵的特征向量及它的特征空间
-
第139集:说明特征基有利于构造合适的坐标
通过求变换矩阵的特征向量获得一组基从而构建很好的坐标系
-
第140集:向量的三重积展开
将三个向量a b c的外积a×b×c展开成用内积表示的形式
-
第141集:由平面方程求法向量
介绍在已知具体的平面方程的情况下如何求出该平面的法向量
-
第142集:点到平面的距离
推到点到平面的距离公式并进行应用
-
第143集:平面之间的距离
求两个相互平行的平面之间的距离